GTR Module

Silicon N Channel IGBT

High Power Switching Applications

Motor Control Applications

Features

- High input impedance
- High speed:

$$\begin{split} t_{f} &= 0.30 \mu s \; (\text{Max.}) \; (I_{C} = 50 \text{A}) \\ t_{rr} &= 0.15 \mu s \; (\text{Max.}) \; (I_{F} = 50 \text{A}) \end{split}$$

- Enhancement mode
- The electrodes are isolated from case
- Includes a complete half bridge card in one package

Maximum Ratings (Ta = 25°C)

CHARACTERISTIC		SYMBOL	RATING	UNIT	
Collector-Emitter Voltage		V _{CES}	600	V	
Gate-Emitter Voltage		V _{GES}	± 20	V	
Collector Current	DC	Ι _C	50	А	
	1ms	I _{CP}	100		
Forward Current	DC	١ _F	50	Α	
	1ms	I _{FM}	100		
Collector Power Dissipation (Tc = 25°C)	P _C	280	W		
Junction Temperature		Тj	150	°C	
Storage Temperature Range		T _{stg}	-40 ~ 125	°C	
Isolation Voltage	V _{Isol}	2500 (AC 1 min.)	V		
Screw Torque (Terminal/Mounting)		_	3/3	N ¥ m	

Weight : 202g (Typ.)

Equivalent Circuit

Unit in mm

Electrical Characteristics (Ta = 25°C)

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage Current		I _{GES}	$V_{GE} = \pm 20V$, $V_{CE} = 0$	_	—	± 500	nA
Collector Cut-off Current		I _{CES}	V _{CE} = 600V, V _{GE} = 0	_	—	1.0	mA
Gate-Emitter Cut-off Voltage		V _{GE (off)}	I _C = 5mA, V _{CE} = 5V	5.0	7.0	8.0	V
Collector-Emitter Saturation Voltage		V _{CE (sat)}	I _C = 50A, V _{GE} = 15V	—	2.10	2.70	V
Input Capacitance		C _{ies}	V _{CE} = 10V, V _{GE} = 0, f = 1MHz	_	4950	—	pF
Switching Time	Turn-on Delay Time	t _{d (on)}	Inductive Load $V_{CC} = 900V$ $I_C = 50A$ $V_{GE} = \pm 15V$ $R_G = 24\Omega$ (Note 1)	_	0.08	0.16	- μs
	Rise Time	t _r		—	0.12	0.24	
	Turn-on Time	t _{on}		—	0.40	0.80	
	Turn-off Delay Time	t _{d (off)}		_	0.20	0.40	
	Fall Time	t _f		—	0.15	0.30	
	Turn-off Time	t _{off}		—	0.50	1.00	
Forward Voltage		V _F	$I_{F} = 50A, V_{GE} = 0$	_	2.30	3.00	V
Reverse Recovery Time		t _{rr}	I _F = 50A, V _{GE} = -10V di/dt = 100A/μs (Note 1)		0.08	0.15	μs
Thermal Resistance		R _{th (j - c)}	Transistor	_	—	0.45	°C/W
			Diode	—	—	0.90	

Note 1 Switching Time and Reverse Recovery Time Test Circuit & Timing Chart.

Note 2 Silicone Grease is Applied.

TYPICAL INVERTER PHASE CURRENT AT TCASE = 80 °C

TYPICAL SWITCHING ENERGY (IC)

600 V Types

The information contained here is subject to change without notice.

The information contained herein is presented only as guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. These TOSHIBA products are intended for usage in general electronic equipments (office equipment, communication equipment, measuring equipment, domestic electrification, etc.) Please make sure that you consult with us before you use these TOSHIBA products in equipments (office equipment, and/or reliability, and in equipments which could have major impact to the welfare of human life (atomic energy control, spaceship, traffic signal, combustion control, all types of safety devices, etc.). TOSHIBA cannot accept liability to any damage which may occur in case these TOSHIBA products were used in the mentioned equipments without prior consultation with TOSHIBA.